Regression functions

Two of the most commonly used \mathbf{R} functions for modelling are:

- lm() for linear models.
- glm() for generalised linear models.

We have entire stage 3 courses on the use of these commands.

Note for SAS users: PROC GLM is **not** the same as glm in **R**.

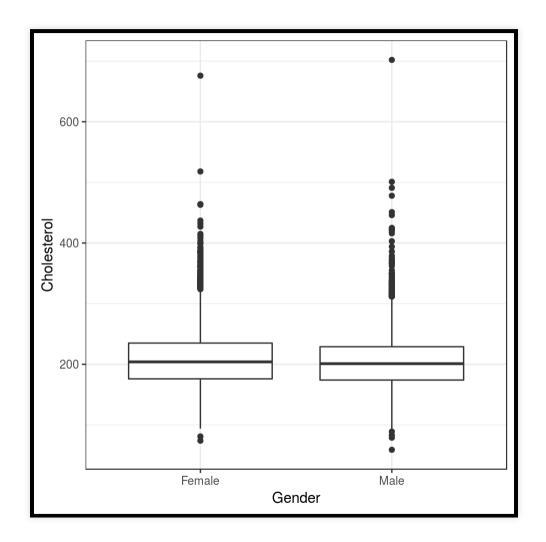
Student's t-test

t.test(y ~ x, data = dataset)

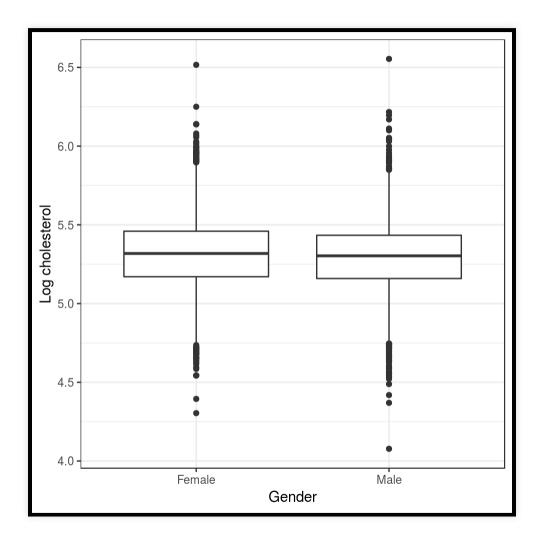
y: the continuous response variable. x: grouping variable with 2 levels. data: name of the dataframe containing the variables.

Suppose we want to test whether males and females have different cholesterol levels. After visualising the data, we can perform the t-test in \mathbf{R} :

t.test(Cholesterol ~ Gender, data = patient.df)



Note we could log-transform the cholesterol variable and make inferences on the median.



t.test(Cholesterol ~ Gender, data = patient.df)

```
#R:
#R:
        Welch Two Sample t-test
#R:
#R:
    data: Cholesterol by Gender
#R:
    t = 6.4444, df = 16021, p-value = 1.194e-10
#R:
    alternative hypothesis: true difference in means is not equal to 0
    95 percent confidence interval:
#R:
#R:
    3.160295 5.923056
#R: sample estimates:
#R:
    mean in group Female mean in group Male
                 208.1786
                                      203.6370
#R:
```

• We have extremely strong evidence to suggest that the average cholesterol level for females is between 3.2 and 5.9 units higher than for males.

Analysis of Variance (ANOVA)

ANOVA in **R**

- Generalises the t-test to more than 2 groups.
- Null hypothesis: all group means are equal.

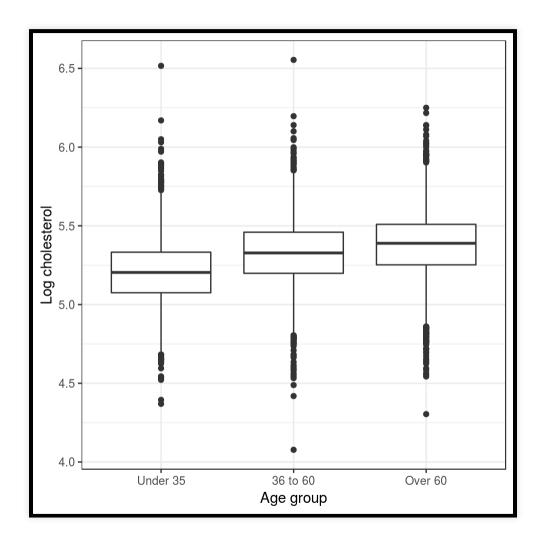
 $aov(y \sim x, data = dataset)$

Example

Null hypothesis: The mean cholesterol levels are the same for all three age groups.

my_aov = aov(Cholesterol ~ age_group, data = patient.df)

ANOVA in **R**



ANOVA in **R**

```
summary(my_aov)
```

```
#R: Df Sum Sq Mean Sq F value Pr(>F)
#R: age_group 2 3280912 1640456 908.2 <2e-16 ***
#R: Residuals 16059 29007528 1806
#R: ---
#R: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#R: 968 observations deleted due to missingness</pre>
```

• We have extremely strong evidence that the average cholesterol level in at least one age group is different to at least one other age group.

Group means

We can compute a summary table of the results easily with the model.tables function:

model.tables(my aov, "means")

Tables of means #R: #R: Grand mean #R: #R: 206.0492 #R: #R: age group Under 35 36 to 60 Over 60 #R: #R: 185.9 209.7 221.2 rep 4949.0 5991.0 5122.0 #R:

It would be interesting to know which pairs are statistically different from one another.

Post-hoc multiple comparisons

We can calculate Tukey's Honest Significant Difference intervals for our post-hoc tests:

TukeyHSD (my_aov)

#R: #R:	Tukey multiple comparisons of means 95% family-wise confidence level								
#R:									
#R:	Fit: aov(formula = Cholesterol ~ age_group, data = patient.df)								
#R:									
#R:	\$age_group								
#R:	diff lwr uprpadj								
#R:	36 to 60-Under 35 23.87793 21.964387 25.79148 0								
#R:	Over 60-Under 35 35.38133 33.395712 37.36695 0								
#R:	Over 60-36 to 60 11.50340 9.607634 13.39917 0								

Post-hoc multiple comparisons



Two-way ANOVA

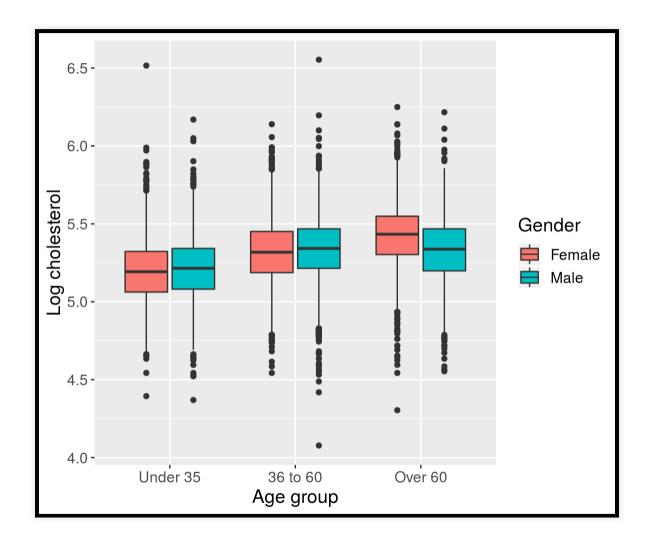
Two-way ANOVA in **R**

- The last ANOVA model was fitted using on categorical variable (age_group), hence a *one*-way ANOVA.
- If we fit a linear model using two categorical, explanatory variables, we have a *two*-way ANOVA. Example research question

Do the differences in cholesterol levels differ between the various age groups *and* genders?

Note that we are fitting an interaction using *.

Visualise the data



Two-way ANOVA in **R**

summary(my_2way_aov)

#R: Sum Sq Mean Sq F value Pr(>F) Df 82506 46.63 8.87e-12 *** Gender 1 82506 #R: 2 3292611 1646305 930.48 < 2e-16 *** #R: age group Gender:age_group 2 505233 252617 142.78 < 2e-16 *** #R: #R: Residuals 16056 28408089 1769 #R: #R: Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 968 observations deleted due to missingness #R:

There is a significant 2-way interaction between gender and age group, i.e. the magnitude of the difference in the mean cholesterol levels between males and females is not constant across the age groups.

Group means

model.tables(my 2way aov, "means")

#R: Tables of means #R: Grand mean #R: 206.0492 #R: #R: #R: Gender #R: Female Male #R: 208.2 203.6 #R: rep 8531.0 7531.0 #R: #R: age group Under 35 36 to 60 Over 60 #R: 185.8 209.7 221.3 #R: rep 4949.0 5991.0 5122.0 #R: #R: #R: Gender:age group #R: age group #R: Gender Under 35 36 to 60 Over 60

Post-hoc multiple comparisons

TukeyHSD (my_2way_aov)

#R:	Tukey multiple comparisons of means							
#R:	95% family-wise confidence level							
#R:								
#R:	Fit: aov(formula = Cholesterol ~ Gender * age_group, data = patient							
#R:								
#R:	\$Gender							
#R:	diff lwr uprpadj							
#R:	Male-Female -4.541675 -5.845313 -3.238038 0							
#R:								
#R:	\$age_group							
#R:	diff lwr uprpadj							
#R:	36 to 60-Under 35 23.86896 21.97511 25.76281 0							
#R:	Over 60-Under 35 35.45641 33.49123 37.42159 0							
#R:	Over 60-36 to 60 11.58745 9.71120 13.46370 0							
#R:								
#R:	\$`Gender:age group`							
#R:	diff lwr upr							
#R:	Male:Under 35-Female:Under 35 3.110853 -0.3060589 6.527764							

Tests of independence

Table of counts

Example

Does smoking depend on age group?

- Two Categorical variables
- Test for independence between rows and columns

smoke_tab = with(patient.df, table(Smoke, age_group))
smoke_tab

#R	: 6	age_group				
#R	: Smoke	Under 35	36	to 60	Over	60
#R	: No	580		1611	20	64
#R	: Yes	1629		1943	7	199

Pearson's Chi-squared test

We can use the chisq.test function in **R** to perform a Pearson's Chi-square test for independence:

chisq.test(smoke_tab)

```
#R:
#R: Pearson's Chi-squared test
#R:
#R: data: smoke_tab
#R: X-squared = 1086.7, df = 2, p-value < 2.2e-16</pre>
```

- We have extremely strong evidence to suggest that smoking and age group are *not* independent of one another.
- Whether a patient smokes or not likely depends on their age group.

Assumptions

- Pearson's Chi-squared tests have certain assumptions.
- These assumptions are primarily to do with sample size.
- **R** will give you a warning if these assumptions are not met:

```
#R: Warning in chisq.test(my_table): Chi-squared approximation may be i
```

```
#R:
#R: Pearson's Chi-squared test
#R:
#R: data: my_table
#R: X-squared = 8.0496, df = 3, p-value = 0.045
```

If the sample size is too small for a Pearson's Chi-square test, one alternative is to use a Fisher's exact test.

Fisher's exact test

If we assume that our sample size was much smaller, and our assumptions for a Chi-square test were not met, we could perform a Fisher's exact test using fisher.test:

```
no_na.df = subset(patient.df, !is.na(Smoke) & !is.na(age_group))
set.seed(3)
smoke_tab = table(no_na.df[sample(seq_along(no_na.df$Age), 30), c("Smoke
fisher.test(smoke tab)
```

#R: #R: Fisher's Exact Test for Count Data #R: #R: data: smoke_tab #R: p-value = 0.005496 #R: alternative hypothesis: two.sided

Linear regression

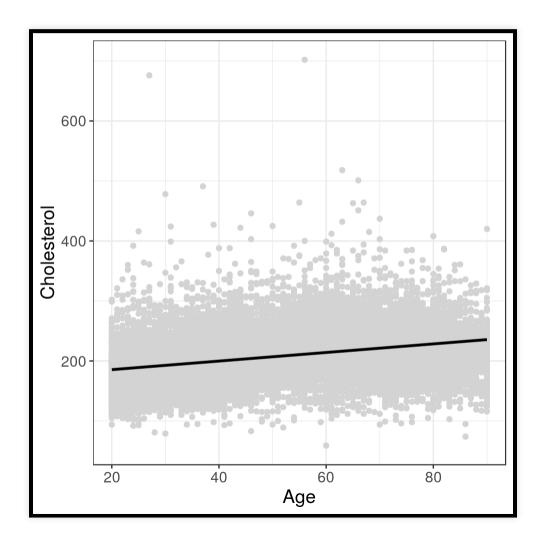
Simple linear regression

We can perform a simple linear regression in **R** using the lm function, for example:

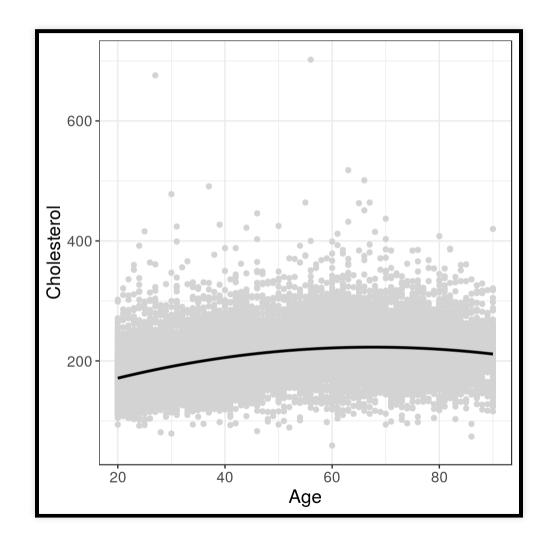
```
lm(y \sim x, data = dataset)
```

- y: the continuous response variable. x: the continuous explanatory variable. data: name of the dataframe containing the variables.
- There can be more than one explanatory variable for a multiple linear regression.
- Since there is only one explanatory variable here, we refer to this a simple linear regression.

Visualise the relationship



Visualise the relationship with a quadratic term



Fit the regression model

- We saw that we will need a quadratic term in the model.
- We can fit a quadratic term in **R** using $I(x^2)$:

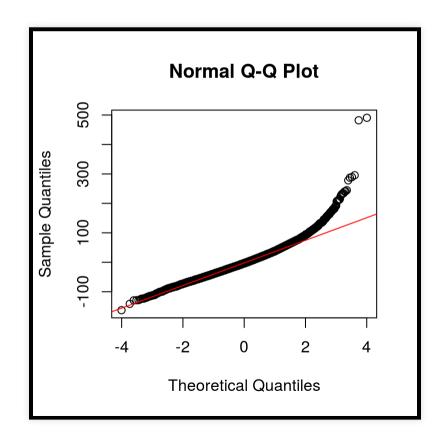
my lm = lm(Cholesterol ~ Age + I(Age^2), data = patient.df)

We now need to check our assumption that the residuals are normally distributed.

Check normality of the residuals

- We can extract the residuals of the model with resid.
- We can plot a Quantile-Quantile (QQ) plot with `qqnorm

```
qqnorm(resid(my_lm))
qqline(resid(my_lm), col = "red")
```



Check normality of the residuals

• We can refit the model using log cholesterol as our response variable instead:

```
my lm = lm(log(Cholesterol) \sim Age + I(Age^2), data = patient.df)
                                             Normal Q-Q Plot
                                                                   00
                                 1.0
                             Sample Quantiles
                                 0.5
                                 0.0
                                 -1.0
                                             -2
                                                     0
                                                             2
                                                                    4
                                             Theoretical Quantiles
```

Final regression model

 $\log \text{ cholesterol} = 4.87 + 0.02 \times \text{Age} + 0.0001 \times \text{Age}^2$

summary(my_lm)

```
#R:
#R:
    Call:
    lm(formula = log(Cholesterol) ~ Age + I(Age^2), data = patient.df)
#R:
#R:
#R:
    Residuals:
                  10 Median 30
#R:
         Min
                                           Max
    -1.30527 -0.12697 0.00406 0.12949 1.31316
#R:
#R:
    Coefficients:
#R:
#R:
                 Estimate Std. Error t value Pr(>|t|)
#R:
    (Intercept) 4.868e+00 1.142e-02 426.44 <2e-16 ***
#R:
         1.555e-02 4.855e-04 32.02 <2e-16 ***
    Aqe
    I(Age^2) -1.161e-04 4.613e-06 -25.17 <2e-16 ***
#R:
#R:
    ___
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#R:
#R:
#R:
    Residual standard error: 0.1998 on 16059 degrees of freedom
#R:
      (968 observations deleted due to missingness)
```

Summary

Model	Function
Student's t-test	t.test
One-way ANOVA	aov
Two-way ANOVA	aov
Pearson's Chi-square test	chisq.test
Fisher's exact test	fisher.test
Linear regression	lm